105 research outputs found

    Computing Optimal Morse Matchings

    Full text link
    Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results

    Computing the Face Lattice of a Polytope from its Vertex-Facet Incidences

    Get PDF
    We give an algorithm that constructs the Hasse diagram of the face lattice of a convex polytope P from its vertex-facet incidences in time O(min{n,m}*a*f), where n is the number of vertices, m is the number of facets, a is the number of vertex-facet incidences, and f is the total number of faces of P. This improves results of Fukuda and Rosta (1994), who described an algorithm for enumerating all faces of a d-polytope in O(min{n,m}*d*f^2) steps. For simple or simplicial d-polytopes our algorithm can be specialized to run in time O(d*a*f). Furthermore, applications of the algorithm to other atomic lattices are discussed, e.g., to face lattices of oriented matroids.Comment: 14 pages; to appear in: Comput. Geom.; the new version contains some minor extensions and corrections as well as a more detailed treatment of oriented matroid

    The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing

    Full text link
    This paper deals with the computational complexity of conditions which guarantee that the NP-hard problem of finding the sparsest solution to an underdetermined linear system can be solved by efficient algorithms. In the literature, several such conditions have been introduced. The most well-known ones are the mutual coherence, the restricted isometry property (RIP), and the nullspace property (NSP). While evaluating the mutual coherence of a given matrix is easy, it has been suspected for some time that evaluating RIP and NSP is computationally intractable in general. We confirm these conjectures by showing that for a given matrix A and positive integer k, computing the best constants for which the RIP or NSP hold is, in general, NP-hard. These results are based on the fact that determining the spark of a matrix is NP-hard, which is also established in this paper. Furthermore, we also give several complexity statements about problems related to the above concepts.Comment: 13 pages; accepted for publication in IEEE Trans. Inf. Theor

    A Compact Formulation for the â„“2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the â„“2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the â„“2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method

    Line Planning and Connectivity

    Get PDF
    The line planning problem in public transport deals with the construction of a system of lines that is both attractive for the passengers and of low costs for the operator. In general, the computed line system should be connected, i.e., for each two stations there have to be a path that is covered by the lines. This subproblem is a generalization of the well-known Steiner tree problem; we call it the Steiner connectivity Problem. We discuss complexity of this problem, generalize the so-called Steiner partition inequalities and give a transformation to the directed Steiner tree problem. We show that directed models provide tight formulations for the Steiner connectivity problem, similar as for the Steiner tree problem

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure

    Sub-Exponential Lower Bounds for Branch-and-Bound with General Disjunctions via Interpolation

    Full text link
    This paper investigates linear programming based branch-and-bound using general disjunctions, also known as stabbing planes, for solving integer programs. We derive the first sub-exponential lower bound (in the encoding length LL of the integer program) for the size of a general branch-and-bound tree for a particular class of (compact) integer programs, namely 2Ω(L1/12−ϵ)2^{\Omega(L^{1/12 -\epsilon})} for every ϵ>0\epsilon >0. This is achieved by showing that general branch-and-bound admits quasi-feasible monotone real interpolation, which allows us to utilize sub-exponential lower-bounds for monotone real circuits separating the so-called clique-coloring pair. One important ingredient of the proof is that for every general branch-and-bound tree proving integer-freeness of a product P×QP\times Q of two polytopes PP and QQ, there exists a closely related branch-and-bound tree for showing integer-freeness of PP or one showing integer-freeness of QQ. Moreover, we prove that monotone real circuits can perform binary search efficiently

    Vertex-Facet Incidences of Unbounded Polyhedra

    Get PDF
    How much of the combinatorial structure of a pointed polyhedron is contained in its vertex-facet incidences? Not too much, in general, as we demonstrate by examples. However, one can tell from the incidence data whether the polyhedron is bounded. In the case of a polyhedron that is simple and "simplicial," i.e., a d-dimensional polyhedron that has d facets through each vertex and d vertices on each facet, we derive from the structure of the vertex-facet incidence matrix that the polyhedron is necessarily bounded. In particular, this yields a characterization of those polyhedra that have circulants as vertex-facet incidence matrices.Comment: LaTeX2e, 14 pages with 4 figure
    • …
    corecore